Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections

نویسندگان

  • Lixiao Xu
  • Shang-Ping Xie
  • Qinyu Liu
چکیده

[1] Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed to assess the dynamics and variability of the North Pacific Subtropical Countercurrent (STCC). Consistent with observations, the STCC is anchored by mode water to the north. For the present climate, the STCC tends to be stronger in models than in observations because of too strong a low potential vorticity signature of mode water. There are significant variations in mode water simulation among models, i.e., in volume and core layer density. The northeast slanted bands of sea surface height (SSH) anomalies associated with the STCC variability are caused by variability in mode water among models and the Hawaii islands are represented in some models, where the island-induced wind curls drive the Hawaiian Lee Countercurrent (HLCC) located to the south of STCC. Projected future changes in STCC and mode water under the Representative Concentration Pathways (RCP) 4.5 scenario are also investigated. By combining the historical and RCP 4.5 runs, an empirical orthogonal function analysis for SSH over the central subtropical gyre (160 E–140 W, 15 –30 N) is performed. The dominant mode of SSH change in 17 CMIP5 models is characterized by the weakening of the STCC because of the reduced formation of mode water. The weakened mode water is closely related to the increased stratification of the upper ocean, the latter being one of the most robust changes as climate warms. Thus the weakened STCC and mode water are common to CMIP5 future climate projections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural climate variability and teleconnections to precipitation over the PacificNorth American region in CMIP3 and CMIP5 models

[1] Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the ...

متن کامل

Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections

Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequen...

متن کامل

A Numerical Simulation of the Mean Water Pathways in the Subtropical and Tropical Pacific Ocean

A reduced-gravity, primitive-equation, upper-ocean general circulation model is used to study the mean water pathways in the North Pacific subtropical and tropical ocean. The model features an explicit physical representation of the surface mixed layer, realistic basin geometry, observed wind and heat flux forcing, and a horizontal grid-stretching technique and a vertical sigma coordinate to ob...

متن کامل

Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts

[1] This study assesses the CMIP5 decadal hindcast/ forecast simulations of seven state-of-the-art oceanatmosphere coupled models. Each decadal prediction consists of simulations over a 10 year period each of which are initialized every five years from climate states of 1960/1961 to 2005/2006. Most of the models overestimate trends, whereby the models predict less warming or even cooling in the...

متن کامل

Northwest Pacific subtropical countercurrent on isopycnal surface in summer

[1] A three-dimensional absolute velocity field on the isopycnal surface in the northwest Pacific subtropical region in the summer is calculated from the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5 0.5 grid using the P-vector method. GDEM for the area was built from historical (1930–1997) temperature and salinity profiles. The basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012